翻訳と辞書
Words near each other
・ 直皖戦争
・ 直直
・ 直示
・ 直示てんびん
・ 直示はかり
・ 直示天秤
・ 直示定義
・ 直示的定義
・ 直税
・ 直積
直積 (ベクトル)
・ 直積 (圏論)
・ 直積 (環論)
・ 直積 (群論)
・ 直積み出し
・ 直積位相
・ 直積位相空間
・ 直積測度
・ 直積演算子
・ 直積演算子法


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

直積 (ベクトル) : ウィキペディア日本語版
直積 (ベクトル)[ちょくせき]

線型代数学における直積(ちょくせき、)あるいは外積(がいせき、)は典型的には二つのベクトルテンソル積を言う。の外積をとった結果は行列になる。外積の名称は内積に対照するもので、内積はベクトルの対をスカラーにする。外積は、クロス積の意味で使われることもあるため、どちらの意味で使われているか注意が必要である。
: \mathbf\otimes\mathbf = \mathbf \mathbf^ =
\beginu_1 \\ u_2 \\ u_3 \\ u_4\end
\beginv_1 & v_2 & v_3\end =
\beginu_1v_1 & u_1v_2 & u_1v_3 \\ u_2v_1 & u_2v_2 & u_2v_3 \\ u_3v_1 & u_3v_2 & u_3v_3 \\ u_4v_1 & u_4v_2 & u_4v_3\end.
ベクトル同士の外積は行列のクロネッカー積の特別な場合である。
「テンソルの外積」を「テンソル積」の同義語として用いる文献もある。外積は R, APL, Mathematica などいくつかの計算機プログラム言語では高階函数でもある。
== 定義 ==

=== 行列表現 ===

ふたつのベクトル の外積 は、 を 列ベクトル、 を 列ベクトル(従って は行ベクトル)としたときの行列の積 に等価である〔Linear Algebra (4th Edition), S. Lipcshutz, M. Lipson, Schaum’s Outlines, McGraw Hill (USA), 2009, ISBN 978-0-07-154352-1〕。成分を用いて
: \mathbf =(u_1, u_2, \dots, u_m),\quad \mathbf = (v_1, v_2, \dots, v_n)
と書けば、外積 は 行列 で各成分は の各成分と の各成分の積であたえられ〔Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, (Verlagsgesellschaft) 3-527-26954-1, (VHC Inc.) 0-89573-752-3
〕、
:\mathbf \otimes \mathbf = \mathbf =
\beginu_1v_1 & u_1v_2 & \dots & u_1v_n \\ u_2v_1 & u_2v_2 & \dots & u_2v_n \\ \vdots & \vdots & \ddots & \vdots\\ u_mv_1 & u_mv_2 & \dots & u_mv_n \end.
と表される。
複素ベクトルの場合には、これを少し変えて、 の転置の代わりに共軛転置 を用い、
: \mathbf \otimes \mathbf = \mathbf \mathbf^
とする。つまり得られる行列 は の各成分と の各成分の複素共軛との積を成分とするものになる。
; 内積との対比
: のときは別な仕方で行列の積を施してスカラー( 行列)が得られる。つまり、数ベクトル空間の標準内積点乗積) である。内積は外積のトレースに等しい。
; 行列としての階数
: がともに非零ならば、外積 の行列としての階数は常に である。このことを見るにはベクトル に掛けて とすればよい。これはベクトル のスカラー -倍に他ならない。
: ("行列の階数" を ("order" / "degree") と混同してはならない)。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「直積 (ベクトル)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.